Stack Heat Recovery, Adsorption Chilling Project

October 26, 2004 PIER Project: MR 03-10

Project Goals

- Determine feasibility of recovering fryer stack heat to reuse heat within the plant process.
- Determine the suitability of adsorption chilling for use in the food industry.
- Install a demonstration project using adsorption chilling and waste heat recovery to replace electrically driven plant cooling.
- Document operation and savings.

Basic Opportunity

- Frito Lay has had a ongoing effort to reduce overall energy costs at each plant.
- Fryers and ovens require large amounts of heat energy.
- Current technology results in a majority of the heat being lost to atmosphere via the exhaust stacks.
- Potato chip fryer stack temperatures of 212 to 230 degrees were found, mostly steam from evaporated water.
- The Visalia CA facility has a year round need for chilled water for their HVAC system. Peak summer demand of approximately 350 Tons/Hour was found.
- By the Summer of 2004, the project was completely designed and detailed cost estimates were completed, along with preliminary approvals from Frito Lay.

Heat Recovery – Fryer Stacks

- Source of waste heat for recovery
- Central to plant operation
- In use year round based on production schedule

Adsorption Chiller (150 ton)

Adsorption vs. Absorption

	Adsorption chiller	Absorption chiller
Refrigerant	Tap water	Distilled water
Adsorbant	Silica gel	Lithium Bromide
COP	0.7	0.7
Warm up time	0-7 minutes	30 minutes
Life expectancy	30 years	7 to 9 years
Minimum hot water temp	122°F	180°F
Chilled water temp	>37°F	>48°F
Corrosion issues	No	Yes
Turn down	7 step automatic	Requires bypassing

Absorption/Adsorption Chilling

Low Temperature Adsorption Chiller

Adsorption Cycle

Proposed Process

- Recover heat from the fryer exhaust stacks
 - Tranter "Econocoil"
 - Heat and Control, HRS heat recovery unit.
- Hot water circulates to the Adsorption chiller
- Use auxiliary heater (steam) for start up or non fryer days.
- Chilled water circulates from Adsorption chiller to existing HVAC chilled water loop.
- Eliminates need for the plant electric chillers except on peak days. The potential exists for meeting all chilling demand.
- Project also looked at the potential for using extra waste heat for a starch drying operation.

Proposed System

Current Chiller System

Progress

- Established historical data records for chilling and fryer operations.
- Established baseline operating conditions for chillers to estimate year round loading based on ambient weather conditions.
- Performed stack tests for exhaust conditions on typical operating day.
- Established tentative heat values and potential process
- Design engineering was completed, reviewed with Frito Lay and updates made to meet plant needs.
- A heat exchanger manufacturer was chosen and was working on final heat exchanger design/performance and costs.
- The chiller manufacturer has arranged for an expedited delivery.
- Process design and the costing was complete and was in the Frito Lay approval process. In late September, Frito Lay decided to close the Visalia facility.
- Onsite is currently looking for an alternative site that has waste heat and a chilling load.

